Metamath Proof Explorer


Theorem ceim1l

Description: One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007)

Ref Expression
Assertion ceim1l A-A-1<A

Proof

Step Hyp Ref Expression
1 renegcl AA
2 reflcl AA
3 1 2 syl AA
4 3 recnd AA
5 ax-1cn 1
6 negdi A1A+1=-A+-1
7 4 5 6 sylancl AA+1=-A+-1
8 4 negcld AA
9 negsub A1-A+-1=-A-1
10 8 5 9 sylancl A-A+-1=-A-1
11 7 10 eqtr2d A-A-1=A+1
12 peano2re AA+1
13 3 12 syl AA+1
14 flltp1 AA<A+1
15 1 14 syl AA<A+1
16 15 adantr AA+1A<A+1
17 ltnegcon1 AA+1A<A+1A+1<A
18 16 17 mpbid AA+1A+1<A
19 13 18 mpdan AA+1<A
20 11 19 eqbrtrd A-A-1<A