Metamath Proof Explorer


Theorem ceqsex

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Hypotheses ceqsex.1 x ψ
ceqsex.2 A V
ceqsex.3 x = A φ ψ
Assertion ceqsex x x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsex.1 x ψ
2 ceqsex.2 A V
3 ceqsex.3 x = A φ ψ
4 3 biimpa x = A φ ψ
5 1 4 exlimi x x = A φ ψ
6 3 biimprcd ψ x = A φ
7 1 6 alrimi ψ x x = A φ
8 2 isseti x x = A
9 exintr x x = A φ x x = A x x = A φ
10 7 8 9 mpisyl ψ x x = A φ
11 5 10 impbii x x = A φ ψ