Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
ceqsex
Metamath Proof Explorer
Description: Elimination of an existential quantifier, using implicit substitution.
(Contributed by NM , 2-Mar-1995) (Revised by Mario Carneiro , 10-Oct-2016)
Ref
Expression
Hypotheses
ceqsex.1
⊢ Ⅎ x ψ
ceqsex.2
⊢ A ∈ V
ceqsex.3
⊢ x = A → φ ↔ ψ
Assertion
ceqsex
⊢ ∃ x x = A ∧ φ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
ceqsex.1
⊢ Ⅎ x ψ
2
ceqsex.2
⊢ A ∈ V
3
ceqsex.3
⊢ x = A → φ ↔ ψ
4
3
biimpa
⊢ x = A ∧ φ → ψ
5
1 4
exlimi
⊢ ∃ x x = A ∧ φ → ψ
6
3
biimprcd
⊢ ψ → x = A → φ
7
1 6
alrimi
⊢ ψ → ∀ x x = A → φ
8
2
isseti
⊢ ∃ x x = A
9
exintr
⊢ ∀ x x = A → φ → ∃ x x = A → ∃ x x = A ∧ φ
10
7 8 9
mpisyl
⊢ ψ → ∃ x x = A ∧ φ
11
5 10
impbii
⊢ ∃ x x = A ∧ φ ↔ ψ