Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ceqsex.1 | ⊢ Ⅎ 𝑥 𝜓 | |
ceqsex.2 | ⊢ 𝐴 ∈ V | ||
ceqsex.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | ceqsex | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsex.1 | ⊢ Ⅎ 𝑥 𝜓 | |
2 | ceqsex.2 | ⊢ 𝐴 ∈ V | |
3 | ceqsex.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
4 | 3 | biimpa | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) |
5 | 1 4 | exlimi | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝜓 ) |
6 | 3 | biimprcd | ⊢ ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) |
7 | 1 6 | alrimi | ⊢ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) |
8 | 2 | isseti | ⊢ ∃ 𝑥 𝑥 = 𝐴 |
9 | exintr | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) | |
10 | 7 8 9 | mpisyl | ⊢ ( 𝜓 → ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
11 | 5 10 | impbii | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) |