Metamath Proof Explorer


Theorem ceqsex

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Hypotheses ceqsex.1 𝑥 𝜓
ceqsex.2 𝐴 ∈ V
ceqsex.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsex ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 ceqsex.1 𝑥 𝜓
2 ceqsex.2 𝐴 ∈ V
3 ceqsex.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 3 biimpa ( ( 𝑥 = 𝐴𝜑 ) → 𝜓 )
5 1 4 exlimi ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) → 𝜓 )
6 3 biimprcd ( 𝜓 → ( 𝑥 = 𝐴𝜑 ) )
7 1 6 alrimi ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
8 2 isseti 𝑥 𝑥 = 𝐴
9 exintr ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
10 7 8 9 mpisyl ( 𝜓 → ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
11 5 10 impbii ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )