Metamath Proof Explorer


Theorem cgrcomand

Description: Deduction form of cgrcom . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrcomand.1 φN
cgrcomand.2 φA𝔼N
cgrcomand.3 φB𝔼N
cgrcomand.4 φC𝔼N
cgrcomand.5 φD𝔼N
cgrcomand.6 φψABCgrCD
Assertion cgrcomand φψCDCgrAB

Proof

Step Hyp Ref Expression
1 cgrcomand.1 φN
2 cgrcomand.2 φA𝔼N
3 cgrcomand.3 φB𝔼N
4 cgrcomand.4 φC𝔼N
5 cgrcomand.5 φD𝔼N
6 cgrcomand.6 φψABCgrCD
7 cgrcom NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDCDCgrAB
8 1 2 3 4 5 7 syl122anc φABCgrCDCDCgrAB
9 8 adantr φψABCgrCDCDCgrAB
10 6 9 mpbid φψCDCgrAB