Metamath Proof Explorer


Theorem cgrcoml

Description: Congruence commutes on the left. Biconditional version of Theorem 2.4 of Schwabhauser p. 27. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrcoml NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDBACgrCD

Proof

Step Hyp Ref Expression
1 simp1 NA𝔼NB𝔼NC𝔼ND𝔼NN
2 simp2l NA𝔼NB𝔼NC𝔼ND𝔼NA𝔼N
3 simp2r NA𝔼NB𝔼NC𝔼ND𝔼NB𝔼N
4 1 2 3 cgrrflx2d NA𝔼NB𝔼NC𝔼ND𝔼NABCgrBA
5 simp3l NA𝔼NB𝔼NC𝔼ND𝔼NC𝔼N
6 simp3r NA𝔼NB𝔼NC𝔼ND𝔼ND𝔼N
7 axcgrtr NA𝔼NB𝔼NB𝔼NA𝔼NC𝔼ND𝔼NABCgrBAABCgrCDBACgrCD
8 1 2 3 3 2 5 6 7 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NABCgrBAABCgrCDBACgrCD
9 4 8 mpand NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDBACgrCD
10 1 3 2 cgrrflx2d NA𝔼NB𝔼NC𝔼ND𝔼NBACgrAB
11 axcgrtr NB𝔼NA𝔼NA𝔼NB𝔼NC𝔼ND𝔼NBACgrABBACgrCDABCgrCD
12 1 3 2 2 3 5 6 11 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NBACgrABBACgrCDABCgrCD
13 10 12 mpand NA𝔼NB𝔼NC𝔼ND𝔼NBACgrCDABCgrCD
14 9 13 impbid NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDBACgrCD