Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Congruence properties
cgrtr3and
Next ⟩
cgrcoml
Metamath Proof Explorer
Ascii
Unicode
Theorem
cgrtr3and
Description:
Deduction form of
cgrtr3
.
(Contributed by
Scott Fenton
, 13-Oct-2013)
Ref
Expression
Hypotheses
cgrtr3and.1
⊢
φ
→
N
∈
ℕ
cgrtr3and.2
⊢
φ
→
A
∈
𝔼
⁡
N
cgrtr3and.3
⊢
φ
→
B
∈
𝔼
⁡
N
cgrtr3and.4
⊢
φ
→
C
∈
𝔼
⁡
N
cgrtr3and.5
⊢
φ
→
D
∈
𝔼
⁡
N
cgrtr3and.6
⊢
φ
→
E
∈
𝔼
⁡
N
cgrtr3and.7
⊢
φ
→
F
∈
𝔼
⁡
N
cgrtr3and.8
⊢
φ
∧
ψ
→
A
B
Cgr
E
F
cgrtr3and.9
⊢
φ
∧
ψ
→
C
D
Cgr
E
F
Assertion
cgrtr3and
⊢
φ
∧
ψ
→
A
B
Cgr
C
D
Proof
Step
Hyp
Ref
Expression
1
cgrtr3and.1
⊢
φ
→
N
∈
ℕ
2
cgrtr3and.2
⊢
φ
→
A
∈
𝔼
⁡
N
3
cgrtr3and.3
⊢
φ
→
B
∈
𝔼
⁡
N
4
cgrtr3and.4
⊢
φ
→
C
∈
𝔼
⁡
N
5
cgrtr3and.5
⊢
φ
→
D
∈
𝔼
⁡
N
6
cgrtr3and.6
⊢
φ
→
E
∈
𝔼
⁡
N
7
cgrtr3and.7
⊢
φ
→
F
∈
𝔼
⁡
N
8
cgrtr3and.8
⊢
φ
∧
ψ
→
A
B
Cgr
E
F
9
cgrtr3and.9
⊢
φ
∧
ψ
→
C
D
Cgr
E
F
10
cgrtr3
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
Cgr
E
F
∧
C
D
Cgr
E
F
→
A
B
Cgr
C
D
11
1
2
3
4
5
6
7
10
syl133anc
⊢
φ
→
A
B
Cgr
E
F
∧
C
D
Cgr
E
F
→
A
B
Cgr
C
D
12
11
adantr
⊢
φ
∧
ψ
→
A
B
Cgr
E
F
∧
C
D
Cgr
E
F
→
A
B
Cgr
C
D
13
8
9
12
mp2and
⊢
φ
∧
ψ
→
A
B
Cgr
C
D