Metamath Proof Explorer


Theorem cgrtr3and

Description: Deduction form of cgrtr3 . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtr3and.1 φ N
cgrtr3and.2 φ A 𝔼 N
cgrtr3and.3 φ B 𝔼 N
cgrtr3and.4 φ C 𝔼 N
cgrtr3and.5 φ D 𝔼 N
cgrtr3and.6 φ E 𝔼 N
cgrtr3and.7 φ F 𝔼 N
cgrtr3and.8 φ ψ A B Cgr E F
cgrtr3and.9 φ ψ C D Cgr E F
Assertion cgrtr3and φ ψ A B Cgr C D

Proof

Step Hyp Ref Expression
1 cgrtr3and.1 φ N
2 cgrtr3and.2 φ A 𝔼 N
3 cgrtr3and.3 φ B 𝔼 N
4 cgrtr3and.4 φ C 𝔼 N
5 cgrtr3and.5 φ D 𝔼 N
6 cgrtr3and.6 φ E 𝔼 N
7 cgrtr3and.7 φ F 𝔼 N
8 cgrtr3and.8 φ ψ A B Cgr E F
9 cgrtr3and.9 φ ψ C D Cgr E F
10 cgrtr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr E F C D Cgr E F A B Cgr C D
11 1 2 3 4 5 6 7 10 syl133anc φ A B Cgr E F C D Cgr E F A B Cgr C D
12 11 adantr φ ψ A B Cgr E F C D Cgr E F A B Cgr C D
13 8 9 12 mp2and φ ψ A B Cgr C D