Metamath Proof Explorer


Theorem cgsex4g

Description: An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995) Avoid ax-10 , ax-11 . (Revised by Gino Giotto, 28-Jun-2024) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 21-Mar-2025)

Ref Expression
Hypotheses cgsex4g.1 x=Ay=Bz=Cw=Dχ
cgsex4g.2 χφψ
Assertion cgsex4g ARBSCRDSxyzwχφψ

Proof

Step Hyp Ref Expression
1 cgsex4g.1 x=Ay=Bz=Cw=Dχ
2 cgsex4g.2 χφψ
3 2 biimpa χφψ
4 3 exlimivv zwχφψ
5 4 exlimivv xyzwχφψ
6 elisset ARxx=A
7 elisset BSyy=B
8 6 7 anim12i ARBSxx=Ayy=B
9 elisset CRzz=C
10 elisset DSww=D
11 9 10 anim12i CRDSzz=Cww=D
12 8 11 anim12i ARBSCRDSxx=Ayy=Bzz=Cww=D
13 19.42vv zwx=Ay=Bz=Cw=Dx=Ay=Bzwz=Cw=D
14 13 2exbii xyzwx=Ay=Bz=Cw=Dxyx=Ay=Bzwz=Cw=D
15 19.41vv xyx=Ay=Bzwz=Cw=Dxyx=Ay=Bzwz=Cw=D
16 exdistrv xyx=Ay=Bxx=Ayy=B
17 exdistrv zwz=Cw=Dzz=Cww=D
18 16 17 anbi12i xyx=Ay=Bzwz=Cw=Dxx=Ayy=Bzz=Cww=D
19 14 15 18 3bitri xyzwx=Ay=Bz=Cw=Dxx=Ayy=Bzz=Cww=D
20 12 19 sylibr ARBSCRDSxyzwx=Ay=Bz=Cw=D
21 1 2eximi zwx=Ay=Bz=Cw=Dzwχ
22 21 2eximi xyzwx=Ay=Bz=Cw=Dxyzwχ
23 20 22 syl ARBSCRDSxyzwχ
24 2 biimprcd ψχφ
25 24 ancld ψχχφ
26 25 2eximdv ψzwχzwχφ
27 26 2eximdv ψxyzwχxyzwχφ
28 23 27 syl5com ARBSCRDSψxyzwχφ
29 5 28 impbid2 ARBSCRDSxyzwχφψ