| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgsex4gOLD.1 |
|
| 2 |
|
cgsex4gOLD.2 |
|
| 3 |
2
|
biimpa |
|
| 4 |
3
|
exlimivv |
|
| 5 |
4
|
exlimivv |
|
| 6 |
|
elisset |
|
| 7 |
|
elisset |
|
| 8 |
6 7
|
anim12i |
|
| 9 |
|
exdistrv |
|
| 10 |
8 9
|
sylibr |
|
| 11 |
|
elisset |
|
| 12 |
|
elisset |
|
| 13 |
11 12
|
anim12i |
|
| 14 |
|
exdistrv |
|
| 15 |
13 14
|
sylibr |
|
| 16 |
10 15
|
anim12i |
|
| 17 |
|
eqeq1 |
|
| 18 |
17
|
anbi2d |
|
| 19 |
18
|
anbi1d |
|
| 20 |
19
|
exbidv |
|
| 21 |
20
|
notbid |
|
| 22 |
|
eqeq1 |
|
| 23 |
22
|
anbi1d |
|
| 24 |
23
|
anbi2d |
|
| 25 |
24
|
exbidv |
|
| 26 |
25
|
notbid |
|
| 27 |
21 26
|
alcomw |
|
| 28 |
27
|
notbii |
|
| 29 |
|
2exnaln |
|
| 30 |
|
2exnaln |
|
| 31 |
28 29 30
|
3bitr4i |
|
| 32 |
31
|
exbii |
|
| 33 |
|
4exdistrv |
|
| 34 |
32 33
|
bitri |
|
| 35 |
16 34
|
sylibr |
|
| 36 |
1
|
2eximi |
|
| 37 |
36
|
2eximi |
|
| 38 |
35 37
|
syl |
|
| 39 |
2
|
biimprcd |
|
| 40 |
39
|
ancld |
|
| 41 |
40
|
2eximdv |
|
| 42 |
41
|
2eximdv |
|
| 43 |
38 42
|
syl5com |
|
| 44 |
5 43
|
impbid2 |
|