| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgsex4gOLD.1 |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → 𝜒 ) |
| 2 |
|
cgsex4gOLD.2 |
⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
2
|
biimpa |
⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 4 |
3
|
exlimivv |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 5 |
4
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 6 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑅 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 7 |
|
elisset |
⊢ ( 𝐵 ∈ 𝑆 → ∃ 𝑦 𝑦 = 𝐵 ) |
| 8 |
6 7
|
anim12i |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 9 |
|
exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 10 |
8 9
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 11 |
|
elisset |
⊢ ( 𝐶 ∈ 𝑅 → ∃ 𝑧 𝑧 = 𝐶 ) |
| 12 |
|
elisset |
⊢ ( 𝐷 ∈ 𝑆 → ∃ 𝑤 𝑤 = 𝐷 ) |
| 13 |
11 12
|
anim12i |
⊢ ( ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) → ( ∃ 𝑧 𝑧 = 𝐶 ∧ ∃ 𝑤 𝑤 = 𝐷 ) ) |
| 14 |
|
exdistrv |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ↔ ( ∃ 𝑧 𝑧 = 𝐶 ∧ ∃ 𝑤 𝑤 = 𝐷 ) ) |
| 15 |
13 14
|
sylibr |
⊢ ( ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) → ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) |
| 16 |
10 15
|
anim12i |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 17 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 = 𝐵 ↔ 𝑣 = 𝐵 ) ) |
| 18 |
17
|
anbi2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑣 = 𝐵 ) ) ) |
| 19 |
18
|
anbi1d |
⊢ ( 𝑦 = 𝑣 → ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑣 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 20 |
19
|
exbidv |
⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑣 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 21 |
20
|
notbid |
⊢ ( 𝑦 = 𝑣 → ( ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑣 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 22 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑣 → ( 𝑧 = 𝐶 ↔ 𝑣 = 𝐶 ) ) |
| 23 |
22
|
anbi1d |
⊢ ( 𝑧 = 𝑣 → ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ↔ ( 𝑣 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 24 |
23
|
anbi2d |
⊢ ( 𝑧 = 𝑣 → ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑣 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 25 |
24
|
exbidv |
⊢ ( 𝑧 = 𝑣 → ( ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑣 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 26 |
25
|
notbid |
⊢ ( 𝑧 = 𝑣 → ( ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑣 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 27 |
21 26
|
alcomw |
⊢ ( ∀ 𝑦 ∀ 𝑧 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∀ 𝑧 ∀ 𝑦 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 28 |
27
|
notbii |
⊢ ( ¬ ∀ 𝑦 ∀ 𝑧 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ¬ ∀ 𝑧 ∀ 𝑦 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 29 |
|
2exnaln |
⊢ ( ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ¬ ∀ 𝑦 ∀ 𝑧 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 30 |
|
2exnaln |
⊢ ( ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ¬ ∀ 𝑧 ∀ 𝑦 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 31 |
28 29 30
|
3bitr4i |
⊢ ( ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 32 |
31
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∃ 𝑥 ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 33 |
|
4exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 34 |
32 33
|
bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 35 |
16 34
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 36 |
1
|
2eximi |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → ∃ 𝑧 ∃ 𝑤 𝜒 ) |
| 37 |
36
|
2eximi |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 ) |
| 38 |
35 37
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 ) |
| 39 |
2
|
biimprcd |
⊢ ( 𝜓 → ( 𝜒 → 𝜑 ) ) |
| 40 |
39
|
ancld |
⊢ ( 𝜓 → ( 𝜒 → ( 𝜒 ∧ 𝜑 ) ) ) |
| 41 |
40
|
2eximdv |
⊢ ( 𝜓 → ( ∃ 𝑧 ∃ 𝑤 𝜒 → ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ) ) |
| 42 |
41
|
2eximdv |
⊢ ( 𝜓 → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ) ) |
| 43 |
38 42
|
syl5com |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ) ) |
| 44 |
5 43
|
impbid2 |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ↔ 𝜓 ) ) |