Metamath Proof Explorer


Theorem chj12i

Description: A rearrangement of Hilbert lattice join. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chj12.1 AC
chj12.2 BC
chj12.3 CC
Assertion chj12i ABC=BAC

Proof

Step Hyp Ref Expression
1 chj12.1 AC
2 chj12.2 BC
3 chj12.3 CC
4 1 2 chjcomi AB=BA
5 4 oveq1i ABC=BAC
6 1 2 3 chjassi ABC=ABC
7 2 1 3 chjassi BAC=BAC
8 5 6 7 3eqtr3i ABC=BAC