Metamath Proof Explorer


Theorem chm0

Description: Meet with Hilbert lattice zero. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chm0 ACA0=0

Proof

Step Hyp Ref Expression
1 ineq1 A=ifACA0A0=ifACA00
2 1 eqeq1d A=ifACA0A0=0ifACA00=0
3 h0elch 0C
4 3 elimel ifACA0C
5 4 chm0i ifACA00=0
6 2 5 dedth ACA0=0