Database
BASIC ORDER THEORY
Posets, directed sets, and lattices as relations
Chains
chneq1
Next ⟩
chneq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
chneq1
Description:
Equality theorem for chains.
(Contributed by
Ender Ting
, 17-Jan-2026)
Ref
Expression
Assertion
chneq1
⊢
<
˙
=
R
→
Chain
A
<
˙
=
Chain
A
R
Proof
Step
Hyp
Ref
Expression
1
breq
⊢
<
˙
=
R
→
c
⁡
x
−
1
<
˙
c
⁡
x
↔
c
⁡
x
−
1
R
c
⁡
x
2
1
ralbidv
⊢
<
˙
=
R
→
∀
x
∈
dom
⁡
c
∖
0
c
⁡
x
−
1
<
˙
c
⁡
x
↔
∀
x
∈
dom
⁡
c
∖
0
c
⁡
x
−
1
R
c
⁡
x
3
2
rabbidv
⊢
<
˙
=
R
→
c
∈
Word
A
|
∀
x
∈
dom
⁡
c
∖
0
c
⁡
x
−
1
<
˙
c
⁡
x
=
c
∈
Word
A
|
∀
x
∈
dom
⁡
c
∖
0
c
⁡
x
−
1
R
c
⁡
x
4
df-chn
⊢
Chain
A
<
˙
=
c
∈
Word
A
|
∀
x
∈
dom
⁡
c
∖
0
c
⁡
x
−
1
<
˙
c
⁡
x
5
df-chn
⊢
Chain
A
R
=
c
∈
Word
A
|
∀
x
∈
dom
⁡
c
∖
0
c
⁡
x
−
1
R
c
⁡
x
6
3
4
5
3eqtr4g
⊢
<
˙
=
R
→
Chain
A
<
˙
=
Chain
A
R