Metamath Proof Explorer


Theorem chneq1

Description: Equality theorem for chains. (Contributed by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion chneq1 < ˙ = R Chain A < ˙ = Chain A R

Proof

Step Hyp Ref Expression
1 breq < ˙ = R c x 1 < ˙ c x c x 1 R c x
2 1 ralbidv < ˙ = R x dom c 0 c x 1 < ˙ c x x dom c 0 c x 1 R c x
3 2 rabbidv < ˙ = R c Word A | x dom c 0 c x 1 < ˙ c x = c Word A | x dom c 0 c x 1 R c x
4 df-chn Chain A < ˙ = c Word A | x dom c 0 c x 1 < ˙ c x
5 df-chn Chain A R = c Word A | x dom c 0 c x 1 R c x
6 3 4 5 3eqtr4g < ˙ = R Chain A < ˙ = Chain A R