| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq |
⊢ ( < = 𝑅 → ( ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐 ‘ 𝑥 ) ↔ ( 𝑐 ‘ ( 𝑥 − 1 ) ) 𝑅 ( 𝑐 ‘ 𝑥 ) ) ) |
| 2 |
1
|
ralbidv |
⊢ ( < = 𝑅 → ( ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) 𝑅 ( 𝑐 ‘ 𝑥 ) ) ) |
| 3 |
2
|
rabbidv |
⊢ ( < = 𝑅 → { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐 ‘ 𝑥 ) } = { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) 𝑅 ( 𝑐 ‘ 𝑥 ) } ) |
| 4 |
|
df-chn |
⊢ ( < Chain 𝐴 ) = { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐 ‘ 𝑥 ) } |
| 5 |
|
df-chn |
⊢ ( 𝑅 Chain 𝐴 ) = { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) 𝑅 ( 𝑐 ‘ 𝑥 ) } |
| 6 |
3 4 5
|
3eqtr4g |
⊢ ( < = 𝑅 → ( < Chain 𝐴 ) = ( 𝑅 Chain 𝐴 ) ) |