Metamath Proof Explorer


Theorem chneq1

Description: Equality theorem for chains. (Contributed by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion chneq1 ( < = 𝑅 → ( < Chain 𝐴 ) = ( 𝑅 Chain 𝐴 ) )

Proof

Step Hyp Ref Expression
1 breq ( < = 𝑅 → ( ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐𝑥 ) ↔ ( 𝑐 ‘ ( 𝑥 − 1 ) ) 𝑅 ( 𝑐𝑥 ) ) )
2 1 ralbidv ( < = 𝑅 → ( ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐𝑥 ) ↔ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) 𝑅 ( 𝑐𝑥 ) ) )
3 2 rabbidv ( < = 𝑅 → { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐𝑥 ) } = { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) 𝑅 ( 𝑐𝑥 ) } )
4 df-chn ( < Chain 𝐴 ) = { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) < ( 𝑐𝑥 ) }
5 df-chn ( 𝑅 Chain 𝐴 ) = { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑥 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑥 − 1 ) ) 𝑅 ( 𝑐𝑥 ) }
6 3 4 5 3eqtr4g ( < = 𝑅 → ( < Chain 𝐴 ) = ( 𝑅 Chain 𝐴 ) )