Metamath Proof Explorer


Theorem chneq1

Description: Equality theorem for chains. (Contributed by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion chneq1
|- ( .< = R -> ( .< Chain A ) = ( R Chain A ) )

Proof

Step Hyp Ref Expression
1 breq
 |-  ( .< = R -> ( ( c ` ( x - 1 ) ) .< ( c ` x ) <-> ( c ` ( x - 1 ) ) R ( c ` x ) ) )
2 1 ralbidv
 |-  ( .< = R -> ( A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) <-> A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) R ( c ` x ) ) )
3 2 rabbidv
 |-  ( .< = R -> { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) } = { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) R ( c ` x ) } )
4 df-chn
 |-  ( .< Chain A ) = { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) }
5 df-chn
 |-  ( R Chain A ) = { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) R ( c ` x ) }
6 3 4 5 3eqtr4g
 |-  ( .< = R -> ( .< Chain A ) = ( R Chain A ) )