| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq |
|- ( .< = R -> ( ( c ` ( x - 1 ) ) .< ( c ` x ) <-> ( c ` ( x - 1 ) ) R ( c ` x ) ) ) |
| 2 |
1
|
ralbidv |
|- ( .< = R -> ( A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) <-> A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) R ( c ` x ) ) ) |
| 3 |
2
|
rabbidv |
|- ( .< = R -> { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) } = { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) R ( c ` x ) } ) |
| 4 |
|
df-chn |
|- ( .< Chain A ) = { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) .< ( c ` x ) } |
| 5 |
|
df-chn |
|- ( R Chain A ) = { c e. Word A | A. x e. ( dom c \ { 0 } ) ( c ` ( x - 1 ) ) R ( c ` x ) } |
| 6 |
3 4 5
|
3eqtr4g |
|- ( .< = R -> ( .< Chain A ) = ( R Chain A ) ) |