Metamath Proof Explorer


Theorem chnrdss

Description: Subset theorem for chains. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnrdss < ˙ R A B Chain A < ˙ Chain B R

Proof

Step Hyp Ref Expression
1 chnrss < ˙ R Chain A < ˙ Chain A R
2 chndss A B Chain A R Chain B R
3 sstr Chain A < ˙ Chain A R Chain A R Chain B R Chain A < ˙ Chain B R
4 1 2 3 syl2an < ˙ R A B Chain A < ˙ Chain B R