Metamath Proof Explorer


Theorem chnrss

Description: Chains under a relation are also chains under any superset relation. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnrss < ˙ R Chain A < ˙ Chain A R

Proof

Step Hyp Ref Expression
1 ssbr < ˙ R x c 1 < ˙ x c x c 1 R x c
2 1 ralimdv < ˙ R c dom x 0 x c 1 < ˙ x c c dom x 0 x c 1 R x c
3 2 anim2d < ˙ R x Word A c dom x 0 x c 1 < ˙ x c x Word A c dom x 0 x c 1 R x c
4 ischn x Chain A < ˙ x Word A c dom x 0 x c 1 < ˙ x c
5 ischn x Chain A R x Word A c dom x 0 x c 1 R x c
6 3 4 5 3imtr4g < ˙ R x Chain A < ˙ x Chain A R
7 6 ssrdv < ˙ R Chain A < ˙ Chain A R