| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssbr |
|- ( .< C_ R -> ( ( x ` ( c - 1 ) ) .< ( x ` c ) -> ( x ` ( c - 1 ) ) R ( x ` c ) ) ) |
| 2 |
1
|
ralimdv |
|- ( .< C_ R -> ( A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) .< ( x ` c ) -> A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) R ( x ` c ) ) ) |
| 3 |
2
|
anim2d |
|- ( .< C_ R -> ( ( x e. Word A /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) .< ( x ` c ) ) -> ( x e. Word A /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) R ( x ` c ) ) ) ) |
| 4 |
|
ischn |
|- ( x e. ( .< Chain A ) <-> ( x e. Word A /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) .< ( x ` c ) ) ) |
| 5 |
|
ischn |
|- ( x e. ( R Chain A ) <-> ( x e. Word A /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) R ( x ` c ) ) ) |
| 6 |
3 4 5
|
3imtr4g |
|- ( .< C_ R -> ( x e. ( .< Chain A ) -> x e. ( R Chain A ) ) ) |
| 7 |
6
|
ssrdv |
|- ( .< C_ R -> ( .< Chain A ) C_ ( R Chain A ) ) |