Metamath Proof Explorer


Theorem chnrss

Description: Chains under a relation are also chains under any superset relation. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnrss
|- ( .< C_ R -> ( .< Chain A ) C_ ( R Chain A ) )

Proof

Step Hyp Ref Expression
1 ssbr
 |-  ( .< C_ R -> ( ( x ` ( c - 1 ) ) .< ( x ` c ) -> ( x ` ( c - 1 ) ) R ( x ` c ) ) )
2 1 ralimdv
 |-  ( .< C_ R -> ( A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) .< ( x ` c ) -> A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) R ( x ` c ) ) )
3 2 anim2d
 |-  ( .< C_ R -> ( ( x e. Word A /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) .< ( x ` c ) ) -> ( x e. Word A /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) R ( x ` c ) ) ) )
4 ischn
 |-  ( x e. ( .< Chain A ) <-> ( x e. Word A /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) .< ( x ` c ) ) )
5 ischn
 |-  ( x e. ( R Chain A ) <-> ( x e. Word A /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) R ( x ` c ) ) )
6 3 4 5 3imtr4g
 |-  ( .< C_ R -> ( x e. ( .< Chain A ) -> x e. ( R Chain A ) ) )
7 6 ssrdv
 |-  ( .< C_ R -> ( .< Chain A ) C_ ( R Chain A ) )