Metamath Proof Explorer


Theorem chnrss

Description: Chains under a relation are also chains under any superset relation. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnrss ( <𝑅 → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ssbr ( <𝑅 → ( ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥𝑐 ) → ( 𝑥 ‘ ( 𝑐 − 1 ) ) 𝑅 ( 𝑥𝑐 ) ) )
2 1 ralimdv ( <𝑅 → ( ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥𝑐 ) → ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) 𝑅 ( 𝑥𝑐 ) ) )
3 2 anim2d ( <𝑅 → ( ( 𝑥 ∈ Word 𝐴 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥𝑐 ) ) → ( 𝑥 ∈ Word 𝐴 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) 𝑅 ( 𝑥𝑐 ) ) ) )
4 ischn ( 𝑥 ∈ ( < Chain 𝐴 ) ↔ ( 𝑥 ∈ Word 𝐴 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥𝑐 ) ) )
5 ischn ( 𝑥 ∈ ( 𝑅 Chain 𝐴 ) ↔ ( 𝑥 ∈ Word 𝐴 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) 𝑅 ( 𝑥𝑐 ) ) )
6 3 4 5 3imtr4g ( <𝑅 → ( 𝑥 ∈ ( < Chain 𝐴 ) → 𝑥 ∈ ( 𝑅 Chain 𝐴 ) ) )
7 6 ssrdv ( <𝑅 → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐴 ) )