| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssbr |
⊢ ( < ⊆ 𝑅 → ( ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥 ‘ 𝑐 ) → ( 𝑥 ‘ ( 𝑐 − 1 ) ) 𝑅 ( 𝑥 ‘ 𝑐 ) ) ) |
| 2 |
1
|
ralimdv |
⊢ ( < ⊆ 𝑅 → ( ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥 ‘ 𝑐 ) → ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) 𝑅 ( 𝑥 ‘ 𝑐 ) ) ) |
| 3 |
2
|
anim2d |
⊢ ( < ⊆ 𝑅 → ( ( 𝑥 ∈ Word 𝐴 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥 ‘ 𝑐 ) ) → ( 𝑥 ∈ Word 𝐴 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) 𝑅 ( 𝑥 ‘ 𝑐 ) ) ) ) |
| 4 |
|
ischn |
⊢ ( 𝑥 ∈ ( < Chain 𝐴 ) ↔ ( 𝑥 ∈ Word 𝐴 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥 ‘ 𝑐 ) ) ) |
| 5 |
|
ischn |
⊢ ( 𝑥 ∈ ( 𝑅 Chain 𝐴 ) ↔ ( 𝑥 ∈ Word 𝐴 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) 𝑅 ( 𝑥 ‘ 𝑐 ) ) ) |
| 6 |
3 4 5
|
3imtr4g |
⊢ ( < ⊆ 𝑅 → ( 𝑥 ∈ ( < Chain 𝐴 ) → 𝑥 ∈ ( 𝑅 Chain 𝐴 ) ) ) |
| 7 |
6
|
ssrdv |
⊢ ( < ⊆ 𝑅 → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐴 ) ) |