Metamath Proof Explorer


Theorem chndss

Description: Chains with an alphabet are also chains with any superset alphabet. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chndss ( 𝐴𝐵 → ( < Chain 𝐴 ) ⊆ ( < Chain 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sswrd ( 𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵 )
2 1 sseld ( 𝐴𝐵 → ( 𝑥 ∈ Word 𝐴𝑥 ∈ Word 𝐵 ) )
3 2 anim1d ( 𝐴𝐵 → ( ( 𝑥 ∈ Word 𝐴 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥𝑐 ) ) → ( 𝑥 ∈ Word 𝐵 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥𝑐 ) ) ) )
4 ischn ( 𝑥 ∈ ( < Chain 𝐴 ) ↔ ( 𝑥 ∈ Word 𝐴 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥𝑐 ) ) )
5 ischn ( 𝑥 ∈ ( < Chain 𝐵 ) ↔ ( 𝑥 ∈ Word 𝐵 ∧ ∀ 𝑐 ∈ ( dom 𝑥 ∖ { 0 } ) ( 𝑥 ‘ ( 𝑐 − 1 ) ) < ( 𝑥𝑐 ) ) )
6 3 4 5 3imtr4g ( 𝐴𝐵 → ( 𝑥 ∈ ( < Chain 𝐴 ) → 𝑥 ∈ ( < Chain 𝐵 ) ) )
7 6 ssrdv ( 𝐴𝐵 → ( < Chain 𝐴 ) ⊆ ( < Chain 𝐵 ) )