Metamath Proof Explorer


Theorem chnrdss

Description: Subset theorem for chains. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chnrdss ( ( <𝑅𝐴𝐵 ) → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐵 ) )

Proof

Step Hyp Ref Expression
1 chnrss ( <𝑅 → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐴 ) )
2 chndss ( 𝐴𝐵 → ( 𝑅 Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐵 ) )
3 sstr ( ( ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐴 ) ∧ ( 𝑅 Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐵 ) ) → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐵 ) )
4 1 2 3 syl2an ( ( <𝑅𝐴𝐵 ) → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐵 ) )