Description: Subset theorem for chains. (Contributed by Ender Ting, 20-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chnrdss | ⊢ ( ( < ⊆ 𝑅 ∧ 𝐴 ⊆ 𝐵 ) → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnrss | ⊢ ( < ⊆ 𝑅 → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐴 ) ) | |
| 2 | chndss | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐵 ) ) | |
| 3 | sstr | ⊢ ( ( ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐴 ) ∧ ( 𝑅 Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐵 ) ) → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐵 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( < ⊆ 𝑅 ∧ 𝐴 ⊆ 𝐵 ) → ( < Chain 𝐴 ) ⊆ ( 𝑅 Chain 𝐵 ) ) |