Metamath Proof Explorer


Theorem chnexg

Description: Chains with a set given for range form a set. (Contributed by Ender Ting, 21-Nov-2024) (Revised by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion chnexg ( 𝐴𝑉 → ( < Chain 𝐴 ) ∈ V )

Proof

Step Hyp Ref Expression
1 wrdexg ( 𝐴𝑉 → Word 𝐴 ∈ V )
2 id ( 𝑥 ∈ ( < Chain 𝐴 ) → 𝑥 ∈ ( < Chain 𝐴 ) )
3 2 chnwrd ( 𝑥 ∈ ( < Chain 𝐴 ) → 𝑥 ∈ Word 𝐴 )
4 3 ssriv ( < Chain 𝐴 ) ⊆ Word 𝐴
5 1 4 jctil ( 𝐴𝑉 → ( ( < Chain 𝐴 ) ⊆ Word 𝐴 ∧ Word 𝐴 ∈ V ) )
6 ssexg ( ( ( < Chain 𝐴 ) ⊆ Word 𝐴 ∧ Word 𝐴 ∈ V ) → ( < Chain 𝐴 ) ∈ V )
7 5 6 syl ( 𝐴𝑉 → ( < Chain 𝐴 ) ∈ V )