Metamath Proof Explorer


Theorem chnexg

Description: Chains with a set given for range form a set. (Contributed by Ender Ting, 21-Nov-2024) (Revised by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion chnexg
|- ( A e. V -> ( .< Chain A ) e. _V )

Proof

Step Hyp Ref Expression
1 wrdexg
 |-  ( A e. V -> Word A e. _V )
2 id
 |-  ( x e. ( .< Chain A ) -> x e. ( .< Chain A ) )
3 2 chnwrd
 |-  ( x e. ( .< Chain A ) -> x e. Word A )
4 3 ssriv
 |-  ( .< Chain A ) C_ Word A
5 1 4 jctil
 |-  ( A e. V -> ( ( .< Chain A ) C_ Word A /\ Word A e. _V ) )
6 ssexg
 |-  ( ( ( .< Chain A ) C_ Word A /\ Word A e. _V ) -> ( .< Chain A ) e. _V )
7 5 6 syl
 |-  ( A e. V -> ( .< Chain A ) e. _V )