| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrd0 |
|- (/) e. Word A |
| 2 |
|
dm0 |
|- dom (/) = (/) |
| 3 |
2
|
difeq1i |
|- ( dom (/) \ { 0 } ) = ( (/) \ { 0 } ) |
| 4 |
|
0dif |
|- ( (/) \ { 0 } ) = (/) |
| 5 |
3 4
|
eqtri |
|- ( dom (/) \ { 0 } ) = (/) |
| 6 |
|
rzal |
|- ( ( dom (/) \ { 0 } ) = (/) -> A. x e. ( dom (/) \ { 0 } ) ( (/) ` ( x - 1 ) ) .< ( (/) ` x ) ) |
| 7 |
5 6
|
ax-mp |
|- A. x e. ( dom (/) \ { 0 } ) ( (/) ` ( x - 1 ) ) .< ( (/) ` x ) |
| 8 |
1 7
|
pm3.2i |
|- ( (/) e. Word A /\ A. x e. ( dom (/) \ { 0 } ) ( (/) ` ( x - 1 ) ) .< ( (/) ` x ) ) |
| 9 |
|
ischn |
|- ( (/) e. ( .< Chain A ) <-> ( (/) e. Word A /\ A. x e. ( dom (/) \ { 0 } ) ( (/) ` ( x - 1 ) ) .< ( (/) ` x ) ) ) |
| 10 |
8 9
|
mpbir |
|- (/) e. ( .< Chain A ) |