Metamath Proof Explorer


Theorem nulchn

Description: Empty set is an increasing chain for every range and every relation. (Contributed by Ender Ting, 19-Nov-2024) (Revised by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion nulchn Chain A < ˙

Proof

Step Hyp Ref Expression
1 wrd0 Word A
2 dm0 dom =
3 2 difeq1i dom 0 = 0
4 0dif 0 =
5 3 4 eqtri dom 0 =
6 rzal dom 0 = x dom 0 x 1 < ˙ x
7 5 6 ax-mp x dom 0 x 1 < ˙ x
8 1 7 pm3.2i Word A x dom 0 x 1 < ˙ x
9 ischn Chain A < ˙ Word A x dom 0 x 1 < ˙ x
10 8 9 mpbir Chain A < ˙