Metamath Proof Explorer


Theorem nulchn

Description: Empty set is an increasing chain for every range and every relation. (Contributed by Ender Ting, 19-Nov-2024) (Revised by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion nulchn ∅ ∈ ( < Chain 𝐴 )

Proof

Step Hyp Ref Expression
1 wrd0 ∅ ∈ Word 𝐴
2 dm0 dom ∅ = ∅
3 2 difeq1i ( dom ∅ ∖ { 0 } ) = ( ∅ ∖ { 0 } )
4 0dif ( ∅ ∖ { 0 } ) = ∅
5 3 4 eqtri ( dom ∅ ∖ { 0 } ) = ∅
6 rzal ( ( dom ∅ ∖ { 0 } ) = ∅ → ∀ 𝑥 ∈ ( dom ∅ ∖ { 0 } ) ( ∅ ‘ ( 𝑥 − 1 ) ) < ( ∅ ‘ 𝑥 ) )
7 5 6 ax-mp 𝑥 ∈ ( dom ∅ ∖ { 0 } ) ( ∅ ‘ ( 𝑥 − 1 ) ) < ( ∅ ‘ 𝑥 )
8 1 7 pm3.2i ( ∅ ∈ Word 𝐴 ∧ ∀ 𝑥 ∈ ( dom ∅ ∖ { 0 } ) ( ∅ ‘ ( 𝑥 − 1 ) ) < ( ∅ ‘ 𝑥 ) )
9 ischn ( ∅ ∈ ( < Chain 𝐴 ) ↔ ( ∅ ∈ Word 𝐴 ∧ ∀ 𝑥 ∈ ( dom ∅ ∖ { 0 } ) ( ∅ ‘ ( 𝑥 − 1 ) ) < ( ∅ ‘ 𝑥 ) ) )
10 8 9 mpbir ∅ ∈ ( < Chain 𝐴 )