| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐴 |
| 2 |
|
dm0 |
⊢ dom ∅ = ∅ |
| 3 |
2
|
difeq1i |
⊢ ( dom ∅ ∖ { 0 } ) = ( ∅ ∖ { 0 } ) |
| 4 |
|
0dif |
⊢ ( ∅ ∖ { 0 } ) = ∅ |
| 5 |
3 4
|
eqtri |
⊢ ( dom ∅ ∖ { 0 } ) = ∅ |
| 6 |
|
rzal |
⊢ ( ( dom ∅ ∖ { 0 } ) = ∅ → ∀ 𝑥 ∈ ( dom ∅ ∖ { 0 } ) ( ∅ ‘ ( 𝑥 − 1 ) ) < ( ∅ ‘ 𝑥 ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ∀ 𝑥 ∈ ( dom ∅ ∖ { 0 } ) ( ∅ ‘ ( 𝑥 − 1 ) ) < ( ∅ ‘ 𝑥 ) |
| 8 |
1 7
|
pm3.2i |
⊢ ( ∅ ∈ Word 𝐴 ∧ ∀ 𝑥 ∈ ( dom ∅ ∖ { 0 } ) ( ∅ ‘ ( 𝑥 − 1 ) ) < ( ∅ ‘ 𝑥 ) ) |
| 9 |
|
ischn |
⊢ ( ∅ ∈ ( < Chain 𝐴 ) ↔ ( ∅ ∈ Word 𝐴 ∧ ∀ 𝑥 ∈ ( dom ∅ ∖ { 0 } ) ( ∅ ‘ ( 𝑥 − 1 ) ) < ( ∅ ‘ 𝑥 ) ) ) |
| 10 |
8 9
|
mpbir |
⊢ ∅ ∈ ( < Chain 𝐴 ) |