Metamath Proof Explorer


Theorem chnexg

Description: Chains with a set given for range form a set. (Contributed by Ender Ting, 21-Nov-2024) (Revised by Ender Ting, 17-Jan-2026)

Ref Expression
Assertion chnexg A V Chain A < ˙ V

Proof

Step Hyp Ref Expression
1 wrdexg A V Word A V
2 id x Chain A < ˙ x Chain A < ˙
3 2 chnwrd x Chain A < ˙ x Word A
4 3 ssriv Chain A < ˙ Word A
5 1 4 jctil A V Chain A < ˙ Word A Word A V
6 ssexg Chain A < ˙ Word A Word A V Chain A < ˙ V
7 5 6 syl A V Chain A < ˙ V