Metamath Proof Explorer


Theorem chndss

Description: Chains with an alphabet are also chains with any superset alphabet. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chndss
|- ( A C_ B -> ( .< Chain A ) C_ ( .< Chain B ) )

Proof

Step Hyp Ref Expression
1 sswrd
 |-  ( A C_ B -> Word A C_ Word B )
2 1 sseld
 |-  ( A C_ B -> ( x e. Word A -> x e. Word B ) )
3 2 anim1d
 |-  ( A C_ B -> ( ( x e. Word A /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) .< ( x ` c ) ) -> ( x e. Word B /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) .< ( x ` c ) ) ) )
4 ischn
 |-  ( x e. ( .< Chain A ) <-> ( x e. Word A /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) .< ( x ` c ) ) )
5 ischn
 |-  ( x e. ( .< Chain B ) <-> ( x e. Word B /\ A. c e. ( dom x \ { 0 } ) ( x ` ( c - 1 ) ) .< ( x ` c ) ) )
6 3 4 5 3imtr4g
 |-  ( A C_ B -> ( x e. ( .< Chain A ) -> x e. ( .< Chain B ) ) )
7 6 ssrdv
 |-  ( A C_ B -> ( .< Chain A ) C_ ( .< Chain B ) )