Metamath Proof Explorer


Theorem chsscon1i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 AC
chjcl.2 BC
Assertion chsscon1i ABBA

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 chjcl.2 BC
3 1 choccli AC
4 3 2 chsscon3i ABBA
5 1 pjococi A=A
6 5 sseq2i BABA
7 4 6 bitri ABBA