Metamath Proof Explorer


Theorem chsscon3

Description: Hilbert lattice contraposition law. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chsscon3 ACBCABBA

Proof

Step Hyp Ref Expression
1 sseq1 A=ifACAABifACAB
2 fveq2 A=ifACAA=ifACA
3 2 sseq2d A=ifACABABifACA
4 1 3 bibi12d A=ifACAABBAifACABBifACA
5 sseq2 B=ifBCBifACABifACAifBCB
6 fveq2 B=ifBCBB=ifBCB
7 6 sseq1d B=ifBCBBifACAifBCBifACA
8 5 7 bibi12d B=ifBCBifACABBifACAifACAifBCBifBCBifACA
9 ifchhv ifACAC
10 ifchhv ifBCBC
11 9 10 chsscon3i ifACAifBCBifBCBifACA
12 4 8 11 dedth2h ACBCABBA