Metamath Proof Explorer


Theorem chsscon3i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 AC
chjcl.2 BC
Assertion chsscon3i ABBA

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 chjcl.2 BC
3 1 chssii A
4 2 chssii B
5 occon ABABBA
6 3 4 5 mp2an ABBA
7 2 choccli BC
8 7 chssii B
9 1 choccli AC
10 9 chssii A
11 occon BABAAB
12 8 10 11 mp2an BAAB
13 1 pjococi A=A
14 2 pjococi B=B
15 12 13 14 3sstr3g BAAB
16 6 15 impbii ABBA