Metamath Proof Explorer


Theorem cht2

Description: The Chebyshev function at 2 . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion cht2 θ2=log2

Proof

Step Hyp Ref Expression
1 df-2 2=1+1
2 1 fveq2i θ2=θ1+1
3 1z 1
4 2prm 2
5 1 4 eqeltrri 1+1
6 chtprm 11+1θ1+1=θ1+log1+1
7 3 5 6 mp2an θ1+1=θ1+log1+1
8 cht1 θ1=0
9 8 eqcomi 0=θ1
10 1 fveq2i log2=log1+1
11 9 10 oveq12i 0+log2=θ1+log1+1
12 2rp 2+
13 relogcl 2+log2
14 12 13 ax-mp log2
15 14 recni log2
16 15 addlidi 0+log2=log2
17 11 16 eqtr3i θ1+log1+1=log2
18 2 7 17 3eqtri θ2=log2