| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2z |
|
| 2 |
1
|
adantr |
|
| 3 |
|
zre |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
chtval |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
ppisval |
|
| 8 |
4 7
|
syl |
|
| 9 |
|
flid |
|
| 10 |
2 9
|
syl |
|
| 11 |
10
|
oveq2d |
|
| 12 |
11
|
ineq1d |
|
| 13 |
8 12
|
eqtrd |
|
| 14 |
13
|
sumeq1d |
|
| 15 |
6 14
|
eqtrd |
|
| 16 |
|
zre |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
ltp1d |
|
| 19 |
17 4
|
ltnled |
|
| 20 |
18 19
|
mpbid |
|
| 21 |
|
elinel1 |
|
| 22 |
|
elfzle2 |
|
| 23 |
21 22
|
syl |
|
| 24 |
20 23
|
nsyl |
|
| 25 |
|
disjsn |
|
| 26 |
24 25
|
sylibr |
|
| 27 |
|
2z |
|
| 28 |
|
zcn |
|
| 29 |
28
|
adantr |
|
| 30 |
|
ax-1cn |
|
| 31 |
|
pncan |
|
| 32 |
29 30 31
|
sylancl |
|
| 33 |
|
prmuz2 |
|
| 34 |
33
|
adantl |
|
| 35 |
|
uz2m1nn |
|
| 36 |
34 35
|
syl |
|
| 37 |
32 36
|
eqeltrrd |
|
| 38 |
|
nnuz |
|
| 39 |
|
2m1e1 |
|
| 40 |
39
|
fveq2i |
|
| 41 |
38 40
|
eqtr4i |
|
| 42 |
37 41
|
eleqtrdi |
|
| 43 |
|
fzsuc2 |
|
| 44 |
27 42 43
|
sylancr |
|
| 45 |
44
|
ineq1d |
|
| 46 |
|
indir |
|
| 47 |
45 46
|
eqtrdi |
|
| 48 |
|
simpr |
|
| 49 |
48
|
snssd |
|
| 50 |
|
dfss2 |
|
| 51 |
49 50
|
sylib |
|
| 52 |
51
|
uneq2d |
|
| 53 |
47 52
|
eqtrd |
|
| 54 |
|
fzfid |
|
| 55 |
|
inss1 |
|
| 56 |
|
ssfi |
|
| 57 |
54 55 56
|
sylancl |
|
| 58 |
|
simpr |
|
| 59 |
58
|
elin2d |
|
| 60 |
|
prmnn |
|
| 61 |
59 60
|
syl |
|
| 62 |
61
|
nnrpd |
|
| 63 |
62
|
relogcld |
|
| 64 |
63
|
recnd |
|
| 65 |
26 53 57 64
|
fsumsplit |
|
| 66 |
|
chtval |
|
| 67 |
17 66
|
syl |
|
| 68 |
|
ppisval |
|
| 69 |
17 68
|
syl |
|
| 70 |
|
flid |
|
| 71 |
70
|
adantr |
|
| 72 |
71
|
oveq2d |
|
| 73 |
72
|
ineq1d |
|
| 74 |
69 73
|
eqtrd |
|
| 75 |
74
|
sumeq1d |
|
| 76 |
67 75
|
eqtr2d |
|
| 77 |
|
prmnn |
|
| 78 |
77
|
adantl |
|
| 79 |
78
|
nnrpd |
|
| 80 |
79
|
relogcld |
|
| 81 |
80
|
recnd |
|
| 82 |
|
fveq2 |
|
| 83 |
82
|
sumsn |
|
| 84 |
78 81 83
|
syl2anc |
|
| 85 |
76 84
|
oveq12d |
|
| 86 |
15 65 85
|
3eqtrd |
|