| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2z |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℤ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℤ ) |
| 3 |
|
zre |
⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 5 |
|
chtval |
⊢ ( ( 𝐴 + 1 ) ∈ ℝ → ( θ ‘ ( 𝐴 + 1 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ ( 𝐴 + 1 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 7 |
|
ppisval |
⊢ ( ( 𝐴 + 1 ) ∈ ℝ → ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ∩ ℙ ) ) |
| 8 |
4 7
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ∩ ℙ ) ) |
| 9 |
|
flid |
⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) ) |
| 10 |
2 9
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( 2 ... ( 𝐴 + 1 ) ) ) |
| 12 |
11
|
ineq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ∩ ℙ ) = ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) |
| 13 |
8 12
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) |
| 14 |
13
|
sumeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 15 |
6 14
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ ( 𝐴 + 1 ) ) = Σ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 16 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ℝ ) |
| 18 |
17
|
ltp1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 < ( 𝐴 + 1 ) ) |
| 19 |
17 4
|
ltnled |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 < ( 𝐴 + 1 ) ↔ ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) ) |
| 20 |
18 19
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 21 |
|
elinel1 |
⊢ ( ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) → ( 𝐴 + 1 ) ∈ ( 2 ... 𝐴 ) ) |
| 22 |
|
elfzle2 |
⊢ ( ( 𝐴 + 1 ) ∈ ( 2 ... 𝐴 ) → ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) → ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 24 |
20 23
|
nsyl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ¬ ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 25 |
|
disjsn |
⊢ ( ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∩ { ( 𝐴 + 1 ) } ) = ∅ ↔ ¬ ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∩ { ( 𝐴 + 1 ) } ) = ∅ ) |
| 27 |
|
2z |
⊢ 2 ∈ ℤ |
| 28 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ℂ ) |
| 30 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 31 |
|
pncan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 32 |
29 30 31
|
sylancl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 33 |
|
prmuz2 |
⊢ ( ( 𝐴 + 1 ) ∈ ℙ → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 35 |
|
uz2m1nn |
⊢ ( ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + 1 ) − 1 ) ∈ ℕ ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 𝐴 + 1 ) − 1 ) ∈ ℕ ) |
| 37 |
32 36
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ℕ ) |
| 38 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 39 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 40 |
39
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 2 − 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 41 |
38 40
|
eqtr4i |
⊢ ℕ = ( ℤ≥ ‘ ( 2 − 1 ) ) |
| 42 |
37 41
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) |
| 43 |
|
fzsuc2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝐴 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) → ( 2 ... ( 𝐴 + 1 ) ) = ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 44 |
27 42 43
|
sylancr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( 𝐴 + 1 ) ) = ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 45 |
44
|
ineq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ∩ ℙ ) ) |
| 46 |
|
indir |
⊢ ( ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ ( { ( 𝐴 + 1 ) } ∩ ℙ ) ) |
| 47 |
45 46
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ ( { ( 𝐴 + 1 ) } ∩ ℙ ) ) ) |
| 48 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℙ ) |
| 49 |
48
|
snssd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → { ( 𝐴 + 1 ) } ⊆ ℙ ) |
| 50 |
|
dfss2 |
⊢ ( { ( 𝐴 + 1 ) } ⊆ ℙ ↔ ( { ( 𝐴 + 1 ) } ∩ ℙ ) = { ( 𝐴 + 1 ) } ) |
| 51 |
49 50
|
sylib |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( { ( 𝐴 + 1 ) } ∩ ℙ ) = { ( 𝐴 + 1 ) } ) |
| 52 |
51
|
uneq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ ( { ( 𝐴 + 1 ) } ∩ ℙ ) ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 53 |
47 52
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 54 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( 𝐴 + 1 ) ) ∈ Fin ) |
| 55 |
|
inss1 |
⊢ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ⊆ ( 2 ... ( 𝐴 + 1 ) ) |
| 56 |
|
ssfi |
⊢ ( ( ( 2 ... ( 𝐴 + 1 ) ) ∈ Fin ∧ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ⊆ ( 2 ... ( 𝐴 + 1 ) ) ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ∈ Fin ) |
| 57 |
54 55 56
|
sylancl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ∈ Fin ) |
| 58 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) |
| 59 |
58
|
elin2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 60 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 62 |
61
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 63 |
62
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 64 |
63
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 65 |
26 53 57 64
|
fsumsplit |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) = ( Σ 𝑝 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ { ( 𝐴 + 1 ) } ( log ‘ 𝑝 ) ) ) |
| 66 |
|
chtval |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 67 |
17 66
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 68 |
|
ppisval |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 69 |
17 68
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 70 |
|
flid |
⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
| 72 |
71
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( ⌊ ‘ 𝐴 ) ) = ( 2 ... 𝐴 ) ) |
| 73 |
72
|
ineq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 74 |
69 73
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 75 |
74
|
sumeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 76 |
67 75
|
eqtr2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) = ( θ ‘ 𝐴 ) ) |
| 77 |
|
prmnn |
⊢ ( ( 𝐴 + 1 ) ∈ ℙ → ( 𝐴 + 1 ) ∈ ℕ ) |
| 78 |
77
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℕ ) |
| 79 |
78
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℝ+ ) |
| 80 |
79
|
relogcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 81 |
80
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) |
| 82 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝐴 + 1 ) → ( log ‘ 𝑝 ) = ( log ‘ ( 𝐴 + 1 ) ) ) |
| 83 |
82
|
sumsn |
⊢ ( ( ( 𝐴 + 1 ) ∈ ℕ ∧ ( log ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) → Σ 𝑝 ∈ { ( 𝐴 + 1 ) } ( log ‘ 𝑝 ) = ( log ‘ ( 𝐴 + 1 ) ) ) |
| 84 |
78 81 83
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ { ( 𝐴 + 1 ) } ( log ‘ 𝑝 ) = ( log ‘ ( 𝐴 + 1 ) ) ) |
| 85 |
76 84
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( Σ 𝑝 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ { ( 𝐴 + 1 ) } ( log ‘ 𝑝 ) ) = ( ( θ ‘ 𝐴 ) + ( log ‘ ( 𝐴 + 1 ) ) ) ) |
| 86 |
15 65 85
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ ( 𝐴 + 1 ) ) = ( ( θ ‘ 𝐴 ) + ( log ‘ ( 𝐴 + 1 ) ) ) ) |