| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2z |
|- ( A e. ZZ -> ( A + 1 ) e. ZZ ) |
| 2 |
1
|
adantr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. ZZ ) |
| 3 |
|
zre |
|- ( ( A + 1 ) e. ZZ -> ( A + 1 ) e. RR ) |
| 4 |
2 3
|
syl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. RR ) |
| 5 |
|
chtval |
|- ( ( A + 1 ) e. RR -> ( theta ` ( A + 1 ) ) = sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
| 6 |
4 5
|
syl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
| 7 |
|
ppisval |
|- ( ( A + 1 ) e. RR -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) ) |
| 8 |
4 7
|
syl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) ) |
| 9 |
|
flid |
|- ( ( A + 1 ) e. ZZ -> ( |_ ` ( A + 1 ) ) = ( A + 1 ) ) |
| 10 |
2 9
|
syl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( |_ ` ( A + 1 ) ) = ( A + 1 ) ) |
| 11 |
10
|
oveq2d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... ( |_ ` ( A + 1 ) ) ) = ( 2 ... ( A + 1 ) ) ) |
| 12 |
11
|
ineq1d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) = ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
| 13 |
8 12
|
eqtrd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
| 14 |
13
|
sumeq1d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) = sum_ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
| 15 |
6 14
|
eqtrd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = sum_ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
| 16 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 17 |
16
|
adantr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. RR ) |
| 18 |
17
|
ltp1d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A < ( A + 1 ) ) |
| 19 |
17 4
|
ltnled |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A < ( A + 1 ) <-> -. ( A + 1 ) <_ A ) ) |
| 20 |
18 19
|
mpbid |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> -. ( A + 1 ) <_ A ) |
| 21 |
|
elinel1 |
|- ( ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) -> ( A + 1 ) e. ( 2 ... A ) ) |
| 22 |
|
elfzle2 |
|- ( ( A + 1 ) e. ( 2 ... A ) -> ( A + 1 ) <_ A ) |
| 23 |
21 22
|
syl |
|- ( ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) -> ( A + 1 ) <_ A ) |
| 24 |
20 23
|
nsyl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> -. ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) ) |
| 25 |
|
disjsn |
|- ( ( ( ( 2 ... A ) i^i Prime ) i^i { ( A + 1 ) } ) = (/) <-> -. ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) ) |
| 26 |
24 25
|
sylibr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( ( 2 ... A ) i^i Prime ) i^i { ( A + 1 ) } ) = (/) ) |
| 27 |
|
2z |
|- 2 e. ZZ |
| 28 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 29 |
28
|
adantr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. CC ) |
| 30 |
|
ax-1cn |
|- 1 e. CC |
| 31 |
|
pncan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
| 32 |
29 30 31
|
sylancl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( A + 1 ) - 1 ) = A ) |
| 33 |
|
prmuz2 |
|- ( ( A + 1 ) e. Prime -> ( A + 1 ) e. ( ZZ>= ` 2 ) ) |
| 34 |
33
|
adantl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. ( ZZ>= ` 2 ) ) |
| 35 |
|
uz2m1nn |
|- ( ( A + 1 ) e. ( ZZ>= ` 2 ) -> ( ( A + 1 ) - 1 ) e. NN ) |
| 36 |
34 35
|
syl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( A + 1 ) - 1 ) e. NN ) |
| 37 |
32 36
|
eqeltrrd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. NN ) |
| 38 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 39 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 40 |
39
|
fveq2i |
|- ( ZZ>= ` ( 2 - 1 ) ) = ( ZZ>= ` 1 ) |
| 41 |
38 40
|
eqtr4i |
|- NN = ( ZZ>= ` ( 2 - 1 ) ) |
| 42 |
37 41
|
eleqtrdi |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. ( ZZ>= ` ( 2 - 1 ) ) ) |
| 43 |
|
fzsuc2 |
|- ( ( 2 e. ZZ /\ A e. ( ZZ>= ` ( 2 - 1 ) ) ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
| 44 |
27 42 43
|
sylancr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
| 45 |
44
|
ineq1d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) u. { ( A + 1 ) } ) i^i Prime ) ) |
| 46 |
|
indir |
|- ( ( ( 2 ... A ) u. { ( A + 1 ) } ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) |
| 47 |
45 46
|
eqtrdi |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) ) |
| 48 |
|
simpr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. Prime ) |
| 49 |
48
|
snssd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> { ( A + 1 ) } C_ Prime ) |
| 50 |
|
dfss2 |
|- ( { ( A + 1 ) } C_ Prime <-> ( { ( A + 1 ) } i^i Prime ) = { ( A + 1 ) } ) |
| 51 |
49 50
|
sylib |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( { ( A + 1 ) } i^i Prime ) = { ( A + 1 ) } ) |
| 52 |
51
|
uneq2d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) = ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) |
| 53 |
47 52
|
eqtrd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) |
| 54 |
|
fzfid |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... ( A + 1 ) ) e. Fin ) |
| 55 |
|
inss1 |
|- ( ( 2 ... ( A + 1 ) ) i^i Prime ) C_ ( 2 ... ( A + 1 ) ) |
| 56 |
|
ssfi |
|- ( ( ( 2 ... ( A + 1 ) ) e. Fin /\ ( ( 2 ... ( A + 1 ) ) i^i Prime ) C_ ( 2 ... ( A + 1 ) ) ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) e. Fin ) |
| 57 |
54 55 56
|
sylancl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) e. Fin ) |
| 58 |
|
simpr |
|- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
| 59 |
58
|
elin2d |
|- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> p e. Prime ) |
| 60 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 61 |
59 60
|
syl |
|- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> p e. NN ) |
| 62 |
61
|
nnrpd |
|- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> p e. RR+ ) |
| 63 |
62
|
relogcld |
|- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
| 64 |
63
|
recnd |
|- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> ( log ` p ) e. CC ) |
| 65 |
26 53 57 64
|
fsumsplit |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> sum_ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ( log ` p ) = ( sum_ p e. ( ( 2 ... A ) i^i Prime ) ( log ` p ) + sum_ p e. { ( A + 1 ) } ( log ` p ) ) ) |
| 66 |
|
chtval |
|- ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
| 67 |
17 66
|
syl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
| 68 |
|
ppisval |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 69 |
17 68
|
syl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 70 |
|
flid |
|- ( A e. ZZ -> ( |_ ` A ) = A ) |
| 71 |
70
|
adantr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( |_ ` A ) = A ) |
| 72 |
71
|
oveq2d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... ( |_ ` A ) ) = ( 2 ... A ) ) |
| 73 |
72
|
ineq1d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
| 74 |
69 73
|
eqtrd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
| 75 |
74
|
sumeq1d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) = sum_ p e. ( ( 2 ... A ) i^i Prime ) ( log ` p ) ) |
| 76 |
67 75
|
eqtr2d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> sum_ p e. ( ( 2 ... A ) i^i Prime ) ( log ` p ) = ( theta ` A ) ) |
| 77 |
|
prmnn |
|- ( ( A + 1 ) e. Prime -> ( A + 1 ) e. NN ) |
| 78 |
77
|
adantl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. NN ) |
| 79 |
78
|
nnrpd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. RR+ ) |
| 80 |
79
|
relogcld |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( log ` ( A + 1 ) ) e. RR ) |
| 81 |
80
|
recnd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( log ` ( A + 1 ) ) e. CC ) |
| 82 |
|
fveq2 |
|- ( p = ( A + 1 ) -> ( log ` p ) = ( log ` ( A + 1 ) ) ) |
| 83 |
82
|
sumsn |
|- ( ( ( A + 1 ) e. NN /\ ( log ` ( A + 1 ) ) e. CC ) -> sum_ p e. { ( A + 1 ) } ( log ` p ) = ( log ` ( A + 1 ) ) ) |
| 84 |
78 81 83
|
syl2anc |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> sum_ p e. { ( A + 1 ) } ( log ` p ) = ( log ` ( A + 1 ) ) ) |
| 85 |
76 84
|
oveq12d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( sum_ p e. ( ( 2 ... A ) i^i Prime ) ( log ` p ) + sum_ p e. { ( A + 1 ) } ( log ` p ) ) = ( ( theta ` A ) + ( log ` ( A + 1 ) ) ) ) |
| 86 |
15 65 85
|
3eqtrd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = ( ( theta ` A ) + ( log ` ( A + 1 ) ) ) ) |