Metamath Proof Explorer


Theorem chtval

Description: Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion chtval AθA=p0Alogp

Proof

Step Hyp Ref Expression
1 oveq2 x=A0x=0A
2 1 ineq1d x=A0x=0A
3 2 sumeq1d x=Ap0xlogp=p0Alogp
4 df-cht θ=xp0xlogp
5 sumex p0AlogpV
6 3 4 5 fvmpt AθA=p0Alogp