Metamath Proof Explorer


Theorem cjcj

Description: The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of Gleason p. 133. (Contributed by NM, 29-Jul-1999) (Proof shortened by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion cjcj AA=A

Proof

Step Hyp Ref Expression
1 cjcl AA
2 recj AA=A
3 1 2 syl AA=A
4 recj AA=A
5 3 4 eqtrd AA=A
6 imcj AA=A
7 1 6 syl AA=A
8 imcj AA=A
9 8 negeqd AA=A
10 imcl AA
11 10 recnd AA
12 11 negnegd AA=A
13 9 12 eqtrd AA=A
14 7 13 eqtrd AA=A
15 14 oveq2d AiA=iA
16 5 15 oveq12d AA+iA=A+iA
17 cjcl AA
18 replim AA=A+iA
19 1 17 18 3syl AA=A+iA
20 replim AA=A+iA
21 16 19 20 3eqtr4d AA=A