Metamath Proof Explorer


Theorem cji

Description: The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005)

Ref Expression
Assertion cji i=i

Proof

Step Hyp Ref Expression
1 rei i=0
2 imi i=1
3 2 oveq2i ii=i1
4 ax-icn i
5 4 mulridi i1=i
6 3 5 eqtri ii=i
7 1 6 oveq12i iii=0i
8 remim ii=iii
9 4 8 ax-mp i=iii
10 df-neg i=0i
11 7 9 10 3eqtr4i i=i