Metamath Proof Explorer


Theorem cjreim

Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005)

Ref Expression
Assertion cjreim ABA+iB=AiB

Proof

Step Hyp Ref Expression
1 recn AA
2 ax-icn i
3 recn BB
4 mulcl iBiB
5 2 3 4 sylancr BiB
6 cjadd AiBA+iB=A+iB
7 1 5 6 syl2an ABA+iB=A+iB
8 cjre AA=A
9 cjmul iBiB=iB
10 2 3 9 sylancr BiB=iB
11 cji i=i
12 11 a1i Bi=i
13 cjre BB=B
14 12 13 oveq12d BiB=iB
15 mulneg1 iBiB=iB
16 2 3 15 sylancr BiB=iB
17 10 14 16 3eqtrd BiB=iB
18 8 17 oveqan12d ABA+iB=A+iB
19 negsub AiBA+iB=AiB
20 1 5 19 syl2an ABA+iB=AiB
21 7 18 20 3eqtrd ABA+iB=AiB