Metamath Proof Explorer


Theorem clatlubcl2

Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018)

Ref Expression
Hypotheses clatlubcl.b B=BaseK
clatlubcl.u U=lubK
Assertion clatlubcl2 KCLatSBSdomU

Proof

Step Hyp Ref Expression
1 clatlubcl.b B=BaseK
2 clatlubcl.u U=lubK
3 1 fvexi BV
4 3 elpw2 S𝒫BSB
5 4 biimpri SBS𝒫B
6 5 adantl KCLatSBS𝒫B
7 eqid glbK=glbK
8 1 2 7 isclat KCLatKPosetdomU=𝒫BdomglbK=𝒫B
9 simprl KPosetdomU=𝒫BdomglbK=𝒫BdomU=𝒫B
10 8 9 sylbi KCLatdomU=𝒫B
11 10 adantr KCLatSBdomU=𝒫B
12 6 11 eleqtrrd KCLatSBSdomU