Metamath Proof Explorer


Theorem clcllaw

Description: Closure of a closed operation. (Contributed by FL, 14-Sep-2010) (Revised by AV, 21-Jan-2020)

Ref Expression
Assertion clcllaw Could not format assertion : No typesetting found for |- ( ( .o. clLaw M /\ X e. M /\ Y e. M ) -> ( X .o. Y ) e. M ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-cllaw clLaw = o m | x m y m x o y m
2 1 bropaex12 Could not format ( .o. clLaw M -> ( .o. e. _V /\ M e. _V ) ) : No typesetting found for |- ( .o. clLaw M -> ( .o. e. _V /\ M e. _V ) ) with typecode |-
3 iscllaw Could not format ( ( .o. e. _V /\ M e. _V ) -> ( .o. clLaw M <-> A. x e. M A. y e. M ( x .o. y ) e. M ) ) : No typesetting found for |- ( ( .o. e. _V /\ M e. _V ) -> ( .o. clLaw M <-> A. x e. M A. y e. M ( x .o. y ) e. M ) ) with typecode |-
4 ovrspc2v Could not format ( ( ( X e. M /\ Y e. M ) /\ A. x e. M A. y e. M ( x .o. y ) e. M ) -> ( X .o. Y ) e. M ) : No typesetting found for |- ( ( ( X e. M /\ Y e. M ) /\ A. x e. M A. y e. M ( x .o. y ) e. M ) -> ( X .o. Y ) e. M ) with typecode |-
5 4 expcom Could not format ( A. x e. M A. y e. M ( x .o. y ) e. M -> ( ( X e. M /\ Y e. M ) -> ( X .o. Y ) e. M ) ) : No typesetting found for |- ( A. x e. M A. y e. M ( x .o. y ) e. M -> ( ( X e. M /\ Y e. M ) -> ( X .o. Y ) e. M ) ) with typecode |-
6 3 5 syl6bi Could not format ( ( .o. e. _V /\ M e. _V ) -> ( .o. clLaw M -> ( ( X e. M /\ Y e. M ) -> ( X .o. Y ) e. M ) ) ) : No typesetting found for |- ( ( .o. e. _V /\ M e. _V ) -> ( .o. clLaw M -> ( ( X e. M /\ Y e. M ) -> ( X .o. Y ) e. M ) ) ) with typecode |-
7 2 6 mpcom Could not format ( .o. clLaw M -> ( ( X e. M /\ Y e. M ) -> ( X .o. Y ) e. M ) ) : No typesetting found for |- ( .o. clLaw M -> ( ( X e. M /\ Y e. M ) -> ( X .o. Y ) e. M ) ) with typecode |-
8 7 3impib Could not format ( ( .o. clLaw M /\ X e. M /\ Y e. M ) -> ( X .o. Y ) e. M ) : No typesetting found for |- ( ( .o. clLaw M /\ X e. M /\ Y e. M ) -> ( X .o. Y ) e. M ) with typecode |-