Step |
Hyp |
Ref |
Expression |
1 |
|
df-cllaw |
⊢ clLaw = { 〈 𝑜 , 𝑚 〉 ∣ ∀ 𝑥 ∈ 𝑚 ∀ 𝑦 ∈ 𝑚 ( 𝑥 𝑜 𝑦 ) ∈ 𝑚 } |
2 |
1
|
bropaex12 |
⊢ ( ⚬ clLaw 𝑀 → ( ⚬ ∈ V ∧ 𝑀 ∈ V ) ) |
3 |
|
iscllaw |
⊢ ( ( ⚬ ∈ V ∧ 𝑀 ∈ V ) → ( ⚬ clLaw 𝑀 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) ) |
4 |
|
ovrspc2v |
⊢ ( ( ( 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝑀 ) |
5 |
4
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 → ( ( 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝑀 ) ) |
6 |
3 5
|
syl6bi |
⊢ ( ( ⚬ ∈ V ∧ 𝑀 ∈ V ) → ( ⚬ clLaw 𝑀 → ( ( 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝑀 ) ) ) |
7 |
2 6
|
mpcom |
⊢ ( ⚬ clLaw 𝑀 → ( ( 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝑀 ) ) |
8 |
7
|
3impib |
⊢ ( ( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝑀 ) |