| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-cllaw |
⊢ clLaw = { 〈 𝑜 , 𝑚 〉 ∣ ∀ 𝑥 ∈ 𝑚 ∀ 𝑦 ∈ 𝑚 ( 𝑥 𝑜 𝑦 ) ∈ 𝑚 } |
| 2 |
1
|
bropaex12 |
⊢ ( ⚬ clLaw 𝑀 → ( ⚬ ∈ V ∧ 𝑀 ∈ V ) ) |
| 3 |
|
iscllaw |
⊢ ( ( ⚬ ∈ V ∧ 𝑀 ∈ V ) → ( ⚬ clLaw 𝑀 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) ) |
| 4 |
|
ovrspc2v |
⊢ ( ( ( 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝑀 ) |
| 5 |
4
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ⚬ 𝑦 ) ∈ 𝑀 → ( ( 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝑀 ) ) |
| 6 |
3 5
|
biimtrdi |
⊢ ( ( ⚬ ∈ V ∧ 𝑀 ∈ V ) → ( ⚬ clLaw 𝑀 → ( ( 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝑀 ) ) ) |
| 7 |
2 6
|
mpcom |
⊢ ( ⚬ clLaw 𝑀 → ( ( 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝑀 ) ) |
| 8 |
7
|
3impib |
⊢ ( ( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀 ) → ( 𝑋 ⚬ 𝑌 ) ∈ 𝑀 ) |