Metamath Proof Explorer


Theorem clelabOLD

Description: Obsolete version of clelab as of 2-Sep-2024. (Contributed by NM, 23-Dec-1993) (Proof shortened by Wolf Lammen, 16-Nov-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion clelabOLD A x | φ x x = A φ

Proof

Step Hyp Ref Expression
1 dfclel A x | φ y y = A y x | φ
2 nfv y x = A φ
3 nfv x y = A
4 nfsab1 x y x | φ
5 3 4 nfan x y = A y x | φ
6 eqeq1 x = y x = A y = A
7 sbequ12 x = y φ y x φ
8 df-clab y x | φ y x φ
9 7 8 bitr4di x = y φ y x | φ
10 6 9 anbi12d x = y x = A φ y = A y x | φ
11 2 5 10 cbvexv1 x x = A φ y y = A y x | φ
12 1 11 bitr4i A x | φ x x = A φ