Metamath Proof Explorer


Theorem cleqh

Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq . See also cleqf . (Contributed by NM, 26-May-1993) (Proof shortened by Wolf Lammen, 14-Nov-2019) Remove dependency on ax-13 . (Revised by BJ, 30-Nov-2020)

Ref Expression
Hypotheses cleqh.1 yAxyA
cleqh.2 yBxyB
Assertion cleqh A=BxxAxB

Proof

Step Hyp Ref Expression
1 cleqh.1 yAxyA
2 cleqh.2 yBxyB
3 dfcleq A=ByyAyB
4 nfv yxAxB
5 1 nf5i xyA
6 2 nf5i xyB
7 5 6 nfbi xyAyB
8 eleq1w x=yxAyA
9 eleq1w x=yxByB
10 8 9 bibi12d x=yxAxByAyB
11 4 7 10 cbvalv1 xxAxByyAyB
12 3 11 bitr4i A=BxxAxB