Metamath Proof Explorer


Theorem climeldmeqmpt2

Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeldmeqmpt2.k k φ
climeldmeqmpt2.m φ M
climeldmeqmpt2.z Z = M
climeldmeqmpt2.a φ A W
climeldmeqmpt2.t φ B V
climeldmeqmpt2.i φ Z A
climeldmeqmpt2.l φ Z B
climeldmeqmpt2.b φ k Z C U
Assertion climeldmeqmpt2 φ k A C dom k B C dom

Proof

Step Hyp Ref Expression
1 climeldmeqmpt2.k k φ
2 climeldmeqmpt2.m φ M
3 climeldmeqmpt2.z Z = M
4 climeldmeqmpt2.a φ A W
5 climeldmeqmpt2.t φ B V
6 climeldmeqmpt2.i φ Z A
7 climeldmeqmpt2.l φ Z B
8 climeldmeqmpt2.b φ k Z C U
9 nfmpt1 _ k k A C
10 nfmpt1 _ k k B C
11 4 mptexd φ k A C V
12 5 mptexd φ k B C V
13 6 sselda φ k Z k A
14 fvmpt4 k A C U k A C k = C
15 13 8 14 syl2anc φ k Z k A C k = C
16 7 sselda φ k Z k B
17 fvmpt4 k B C U k B C k = C
18 16 8 17 syl2anc φ k Z k B C k = C
19 15 18 eqtr4d φ k Z k A C k = k B C k
20 1 9 10 3 11 12 2 19 climeldmeqf φ k A C dom k B C dom