Metamath Proof Explorer


Theorem climeldmeqf

Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeldmeqf.p kφ
climeldmeqf.n _kF
climeldmeqf.o _kG
climeldmeqf.z Z=M
climeldmeqf.f φFV
climeldmeqf.g φGW
climeldmeqf.m φM
climeldmeqf.e φkZFk=Gk
Assertion climeldmeqf φFdomGdom

Proof

Step Hyp Ref Expression
1 climeldmeqf.p kφ
2 climeldmeqf.n _kF
3 climeldmeqf.o _kG
4 climeldmeqf.z Z=M
5 climeldmeqf.f φFV
6 climeldmeqf.g φGW
7 climeldmeqf.m φM
8 climeldmeqf.e φkZFk=Gk
9 nfv kjZ
10 1 9 nfan kφjZ
11 nfcv _kj
12 2 11 nffv _kFj
13 3 11 nffv _kGj
14 12 13 nfeq kFj=Gj
15 10 14 nfim kφjZFj=Gj
16 eleq1w k=jkZjZ
17 16 anbi2d k=jφkZφjZ
18 fveq2 k=jFk=Fj
19 fveq2 k=jGk=Gj
20 18 19 eqeq12d k=jFk=GkFj=Gj
21 17 20 imbi12d k=jφkZFk=GkφjZFj=Gj
22 15 21 8 chvarfv φjZFj=Gj
23 4 5 6 7 22 climeldmeq φFdomGdom