| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climeldmeqf.p |
|- F/ k ph |
| 2 |
|
climeldmeqf.n |
|- F/_ k F |
| 3 |
|
climeldmeqf.o |
|- F/_ k G |
| 4 |
|
climeldmeqf.z |
|- Z = ( ZZ>= ` M ) |
| 5 |
|
climeldmeqf.f |
|- ( ph -> F e. V ) |
| 6 |
|
climeldmeqf.g |
|- ( ph -> G e. W ) |
| 7 |
|
climeldmeqf.m |
|- ( ph -> M e. ZZ ) |
| 8 |
|
climeldmeqf.e |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) |
| 9 |
|
nfv |
|- F/ k j e. Z |
| 10 |
1 9
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
| 11 |
|
nfcv |
|- F/_ k j |
| 12 |
2 11
|
nffv |
|- F/_ k ( F ` j ) |
| 13 |
3 11
|
nffv |
|- F/_ k ( G ` j ) |
| 14 |
12 13
|
nfeq |
|- F/ k ( F ` j ) = ( G ` j ) |
| 15 |
10 14
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( F ` j ) = ( G ` j ) ) |
| 16 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
| 17 |
16
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
| 18 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
| 19 |
|
fveq2 |
|- ( k = j -> ( G ` k ) = ( G ` j ) ) |
| 20 |
18 19
|
eqeq12d |
|- ( k = j -> ( ( F ` k ) = ( G ` k ) <-> ( F ` j ) = ( G ` j ) ) ) |
| 21 |
17 20
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) <-> ( ( ph /\ j e. Z ) -> ( F ` j ) = ( G ` j ) ) ) ) |
| 22 |
15 21 8
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) = ( G ` j ) ) |
| 23 |
4 5 6 7 22
|
climeldmeq |
|- ( ph -> ( F e. dom ~~> <-> G e. dom ~~> ) ) |