Metamath Proof Explorer


Theorem climres

Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion climres MFVFMAFA

Proof

Step Hyp Ref Expression
1 eqid M=M
2 resexg FVFMV
3 2 adantl MFVFMV
4 simpr MFVFV
5 simpl MFVM
6 fvres kMFMk=Fk
7 6 adantl MFVkMFMk=Fk
8 1 3 4 5 7 climeq MFVFMAFA