Metamath Proof Explorer


Theorem climz

Description: The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion climz ×00

Proof

Step Hyp Ref Expression
1 0cn 0
2 0z 0
3 uzssz 0
4 zex V
5 3 4 climconst2 00×00
6 1 2 5 mp2an ×00