Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlimuni.1 | |
|
rlimuni.2 | |
||
rlimuni.3 | |
||
rlimuni.4 | |
||
Assertion | rlimuni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimuni.1 | |
|
2 | rlimuni.2 | |
|
3 | rlimuni.3 | |
|
4 | rlimuni.4 | |
|
5 | rlimcl | |
|
6 | 3 5 | syl | |
7 | 6 | ad2antrr | |
8 | rlimcl | |
|
9 | 4 8 | syl | |
10 | 9 | ad2antrr | |
11 | 7 10 | subcld | |
12 | 11 | abscld | |
13 | 12 | ltnrd | |
14 | 1 | ffvelcdmda | |
15 | 14 | adantlr | |
16 | 15 7 | abssubd | |
17 | 16 | breq1d | |
18 | 17 | anbi1d | |
19 | abs3lem | |
|
20 | 7 10 15 12 19 | syl22anc | |
21 | 18 20 | sylbid | |
22 | 21 | imim2d | |
23 | 22 | impcomd | |
24 | 13 23 | mtod | |
25 | 24 | nrexdv | |
26 | r19.29r | |
|
27 | 25 26 | nsyl | |
28 | 27 | nrexdv | |
29 | 1 | fdmd | |
30 | rlimss | |
|
31 | 3 30 | syl | |
32 | 29 31 | eqsstrrd | |
33 | ressxr | |
|
34 | 32 33 | sstrdi | |
35 | supxrunb1 | |
|
36 | 34 35 | syl | |
37 | 2 36 | mpbird | |
38 | r19.29 | |
|
39 | 38 | ex | |
40 | 37 39 | syl | |
41 | 28 40 | mtod | |
42 | 1 | adantr | |
43 | ffvelcdm | |
|
44 | 43 | ralrimiva | |
45 | 42 44 | syl | |
46 | 6 | adantr | |
47 | 9 | adantr | |
48 | 46 47 | subcld | |
49 | simpr | |
|
50 | 46 47 49 | subne0d | |
51 | 48 50 | absrpcld | |
52 | 51 | rphalfcld | |
53 | 42 | feqmptd | |
54 | 3 | adantr | |
55 | 53 54 | eqbrtrrd | |
56 | 45 52 55 | rlimi | |
57 | 4 | adantr | |
58 | 53 57 | eqbrtrrd | |
59 | 45 52 58 | rlimi | |
60 | 32 | adantr | |
61 | rexanre | |
|
62 | 60 61 | syl | |
63 | 56 59 62 | mpbir2and | |
64 | 63 | ex | |
65 | 64 | necon1bd | |
66 | 41 65 | mpd | |