Metamath Proof Explorer


Theorem rlimuni

Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016)

Ref Expression
Hypotheses rlimuni.1 φF:A
rlimuni.2 φsupA*<=+∞
rlimuni.3 φFB
rlimuni.4 φFC
Assertion rlimuni φB=C

Proof

Step Hyp Ref Expression
1 rlimuni.1 φF:A
2 rlimuni.2 φsupA*<=+∞
3 rlimuni.3 φFB
4 rlimuni.4 φFC
5 rlimcl FBB
6 3 5 syl φB
7 6 ad2antrr φjkAB
8 rlimcl FCC
9 4 8 syl φC
10 9 ad2antrr φjkAC
11 7 10 subcld φjkABC
12 11 abscld φjkABC
13 12 ltnrd φjkA¬BC<BC
14 1 ffvelcdmda φkAFk
15 14 adantlr φjkAFk
16 15 7 abssubd φjkAFkB=BFk
17 16 breq1d φjkAFkB<BC2BFk<BC2
18 17 anbi1d φjkAFkB<BC2FkC<BC2BFk<BC2FkC<BC2
19 abs3lem BCFkBCBFk<BC2FkC<BC2BC<BC
20 7 10 15 12 19 syl22anc φjkABFk<BC2FkC<BC2BC<BC
21 18 20 sylbid φjkAFkB<BC2FkC<BC2BC<BC
22 21 imim2d φjkAjkFkB<BC2FkC<BC2jkBC<BC
23 22 impcomd φjkAjkjkFkB<BC2FkC<BC2BC<BC
24 13 23 mtod φjkA¬jkjkFkB<BC2FkC<BC2
25 24 nrexdv φj¬kAjkjkFkB<BC2FkC<BC2
26 r19.29r kAjkkAjkFkB<BC2FkC<BC2kAjkjkFkB<BC2FkC<BC2
27 25 26 nsyl φj¬kAjkkAjkFkB<BC2FkC<BC2
28 27 nrexdv φ¬jkAjkkAjkFkB<BC2FkC<BC2
29 1 fdmd φdomF=A
30 rlimss FBdomF
31 3 30 syl φdomF
32 29 31 eqsstrrd φA
33 ressxr *
34 32 33 sstrdi φA*
35 supxrunb1 A*jkAjksupA*<=+∞
36 34 35 syl φjkAjksupA*<=+∞
37 2 36 mpbird φjkAjk
38 r19.29 jkAjkjkAjkFkB<BC2FkC<BC2jkAjkkAjkFkB<BC2FkC<BC2
39 38 ex jkAjkjkAjkFkB<BC2FkC<BC2jkAjkkAjkFkB<BC2FkC<BC2
40 37 39 syl φjkAjkFkB<BC2FkC<BC2jkAjkkAjkFkB<BC2FkC<BC2
41 28 40 mtod φ¬jkAjkFkB<BC2FkC<BC2
42 1 adantr φBCF:A
43 ffvelcdm F:AkAFk
44 43 ralrimiva F:AkAFk
45 42 44 syl φBCkAFk
46 6 adantr φBCB
47 9 adantr φBCC
48 46 47 subcld φBCBC
49 simpr φBCBC
50 46 47 49 subne0d φBCBC0
51 48 50 absrpcld φBCBC+
52 51 rphalfcld φBCBC2+
53 42 feqmptd φBCF=kAFk
54 3 adantr φBCFB
55 53 54 eqbrtrrd φBCkAFkB
56 45 52 55 rlimi φBCjkAjkFkB<BC2
57 4 adantr φBCFC
58 53 57 eqbrtrrd φBCkAFkC
59 45 52 58 rlimi φBCjkAjkFkC<BC2
60 32 adantr φBCA
61 rexanre AjkAjkFkB<BC2FkC<BC2jkAjkFkB<BC2jkAjkFkC<BC2
62 60 61 syl φBCjkAjkFkB<BC2FkC<BC2jkAjkFkB<BC2jkAjkFkC<BC2
63 56 59 62 mpbir2and φBCjkAjkFkB<BC2FkC<BC2
64 63 ex φBCjkAjkFkB<BC2FkC<BC2
65 64 necon1bd φ¬jkAjkFkB<BC2FkC<BC2B=C
66 41 65 mpd φB=C