Description: Two ways to express that a function has a limit. (The expression ( ~>rF ) is sometimes useful as a shorthand for "the unique limit of the function F "). (Contributed by Mario Carneiro, 8-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlimuni.1 | |
|
rlimuni.2 | |
||
Assertion | rlimdm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimuni.1 | |
|
2 | rlimuni.2 | |
|
3 | eldmg | |
|
4 | 3 | ibi | |
5 | simpr | |
|
6 | df-fv | |
|
7 | 1 | adantr | |
8 | 2 | adantr | |
9 | simprr | |
|
10 | simprl | |
|
11 | 7 8 9 10 | rlimuni | |
12 | 11 | expr | |
13 | breq2 | |
|
14 | 5 13 | syl5ibrcom | |
15 | 12 14 | impbid | |
16 | 15 | adantr | |
17 | 16 | iota5 | |
18 | 17 | elvd | |
19 | 6 18 | eqtrid | |
20 | 5 19 | breqtrrd | |
21 | 20 | ex | |
22 | 21 | exlimdv | |
23 | 4 22 | syl5 | |
24 | rlimrel | |
|
25 | 24 | releldmi | |
26 | 23 25 | impbid1 | |