Metamath Proof Explorer


Theorem rlimdm

Description: Two ways to express that a function has a limit. (The expression ( ~>rF ) is sometimes useful as a shorthand for "the unique limit of the function F "). (Contributed by Mario Carneiro, 8-May-2016)

Ref Expression
Hypotheses rlimuni.1 φF:A
rlimuni.2 φsupA*<=+∞
Assertion rlimdm φFdomFF

Proof

Step Hyp Ref Expression
1 rlimuni.1 φF:A
2 rlimuni.2 φsupA*<=+∞
3 eldmg FdomFdomxFx
4 3 ibi FdomxFx
5 simpr φFxFx
6 df-fv F=ιy|Fy
7 1 adantr φFxFyF:A
8 2 adantr φFxFysupA*<=+∞
9 simprr φFxFyFy
10 simprl φFxFyFx
11 7 8 9 10 rlimuni φFxFyy=x
12 11 expr φFxFyy=x
13 breq2 y=xFyFx
14 5 13 syl5ibrcom φFxy=xFy
15 12 14 impbid φFxFyy=x
16 15 adantr φFxxVFyy=x
17 16 iota5 φFxxVιy|Fy=x
18 17 elvd φFxιy|Fy=x
19 6 18 eqtrid φFxF=x
20 5 19 breqtrrd φFxFF
21 20 ex φFxFF
22 21 exlimdv φxFxFF
23 4 22 syl5 φFdomFF
24 rlimrel Rel
25 24 releldmi FFFdom
26 23 25 impbid1 φFdomFF